Cutaneous overexpression of neurotrophin-3 (NT3) selectively restores sensory innervation in NT3 gene knockout mice.

نویسندگان

  • R F Krimm
  • B M Davis
  • K M Albers
چکیده

Neurotrophin-3 (NT3) is essential for development of sensory innervation to the skin. NT3 supports the postnatal survival of primary sensory neurons that mediate mechanoreception and their Merkel cell containing touch dome end organs (Airaksinen et al., 1996). In this study we determined whether NT3 overexpressed in the skin could restore innervation lost when endogenous NT3 levels were reduced. Hybrid mice that overexpress NT3 in basal keratinocytes but lack one endogenous NT3 allele (K14-NT3/NT3(+/-)) were compared to NT3 overexpresser (K14-NT3) mice, heterozygous knockout (NT3(+/-)) mice, and littermate control mice. In line with previous analyses, NT3(+/-) mice lost 63% of the Merkel cells associated with touch domes, 67% of touch dome units and the associated SAI innervation. All of these parameters were restored to overexpresser levels in K14-NT3/NT3(+/-) mice. Knockout NT3(+/-) mice also had a 31% reduction of L4/L5 dorsal root ganglion cells and a 24% reduction of myelinated axons in the saphenous cutaneous nerve. These losses were also restored in hybrid K14-NT3/NT3(+/-) mice, though only to control mouse values. These results indicate that overexpression of NT3 in skin of NT3(+/-) knockout mice rescued most cutaneous neurons lost in NT3(+/-) mice, but was unable to rescue NT3-dependent neurons that project to noncutaneous sensory targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development.

Neurotrophins have multiple functions during peripheral nervous system development such as controlling neuronal survival, target innervation and synaptogenesis. Neurotrophin specificity has been attributed to the selective expression of the Trk tyrosine kinase receptors in different neuronal subpopulations. However, despite overlapping expression of TrkB and TrkC in many sensory ganglia, brain-...

متن کامل

Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death.

To determine if muscle sensory neurons require neurotrophin-3 (NT3) during the period of normal cell death, we used an NT3-specific antiserum to deplete NT3 from peripheral tissues during this period in chick embryos. DiI staining of dorsal roots indicated that limb injections of anti-NT3 reduced the spinal projection of muscle spindle afferents. In contrast, injection of the antiserum into the...

متن کامل

Inactivation of one copy of the mouse neurotrophin-3 gene induces cardiac sympathetic deficits.

Whether two copies of the neurotrophin-3 (NT3) gene are necessary for proper development of cardiac sympathetic innervation was investigated in mice carrying a targeted inactivation of the NT3 gene. Heterozygous (+/-) and null (-/-) mutant mice had fewer stellate ganglion neurons than did wild-type (+/+) mice at postnatal day 0 (P0 or birth), and this deficit was maintained between adult (P60) ...

متن کامل

NT3 expressed in skin causes enhancement of SA1 sensory neurons that leads to postnatal enhancement of Merkel cells.

To determine the role of NT3 in the postnatal maturation of Merkel cell (MC) sensory neurite complexes (touch domes), we examined the development of their neural and end-organ components in wild-type and transgenic mice that overexpress NT3 (NT3-OE). Touch domes are sensory complexes of the skin that contain specialized MCs innervated by slowly adapting type 1 (SA1) neurons. Touch domes are dep...

متن کامل

Dissection of NT3 functions in vivo by gene replacement strategy.

The development of the peripheral nervous system is governed in part by a family of neurotrophic factors that signal through Trk tyrosine kinase receptors. Neurotrophin 3 (NT3) ablation in mice causes a more severe neuronal phenotype than deletion of its receptor TrkC, suggesting that NT3 acts also through other non-preferred Trk receptors. To study the role of low-affinity ligand receptor inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurobiology

دوره 43 1  شماره 

صفحات  -

تاریخ انتشار 2000